Scaling Ionograms

Phil Wilkinson
IPS
June 1999
Basic Scaling

- Regions of the Ionosphere
 - Normal regions: E, F2, F2 & sporadic E
 - Less familiar: E2, F0.5, F1.5, meteors
 - Notable conditions: spread F, absorption
 - Notorious effects: interference, equipment failure
Basic Scaling

- Geometry of reflections
 - think specular
 - know the difference between thick and thin layers; retardation and blanketing,
 - recognise examples of layers
 - develop concepts of oblique returns; recognise and eliminate them when scaling
 - recognise unusual things; particle E, spurs, travelling disturbances
Basic Scaling

• Resources
 • UAG-23A; the bible, by Rawer and Piggott
 • UAG-50; the High Latitude Supplement by Piggott
 • INAG; an outlet for frustration for some, a link with all the other scalers for others
 • Japanese scaling manual
 • Scaling aids
 • IPS scaling notes
 • ionograms and your own common sense
 • look at, and scale, lots of ionograms
Nuts and Bolts of Scaling

- Accuracy of the scaling - qualifying letters
 - quantitative accuracy; E, D, U
 - unquantifiable errors; J, A, O, Z
 - unknown errors; I
- Reason for the loss of accuracy - descriptive letters
 - bumps; H, V
 - things; F, K, P, Q, X, Z
- Flags
 - which are more objective things.
Ionospheric Features

- Once you recognise these you are understanding much of the ionogram.
 - Spread F: a well known night time phenomenon.
 - Sporadic E
 - Travelling ionospheric disturbances (TID); medium scale features.
 - Ionospheric storms - These are global events.
 - Troughs: a sub auroral, large scale features.
Ionospheric Regions

• There are distinctive aspects to the different regions
 • Mid latitudes
 • sporadic E, travelling ionospheric disturbances, ionospheric storms
 • Low latitudes
 • absorption, thick ionosphere and variability, nighttime HF interference
 • High latitudes
 • particle effects (Es-K, B) and troughs and ridges of ionisation, much spreading in E and F region
Course Objectives

• recognise and scale all the conventional parameters,
• use scaling letters effectively,
• recognise good and bad ionograms,
• use simple principles to scale complex ionograms.
• appreciate the sources affecting ionograms,

In addition you may
• recognise large scale ionospheric processes,
• become more confident in assessing ionospheric effects on HF systems.
Sample Ionograms: nighttime

- Boring nighttime ionogram
- Clear foF2 and fxF2
- Multiples present
- No interference effects
- A few odd details worth noting:
 - around the time base echo
 - slight spreading

foF2, fmin, h’F, all Es are easy; fxl is too.
Sample Ionograms : daytime

- Typical daytime ionogram
- E/F region layers
- multiples
- extraordinary weak
- sporadic E present
- easy to scale

Scaling problems:
- foE - extrapolation
- Es - weak traces
- fxl - interference
Sample Ionograms: nighttime
(Chch 31/05/99 12 UT)
Sample Ionograms: nighttime
(Chch 31/05/99 12 UT)
Sample Ionograms : nighttime
(Chch 31/05/99 12 UT)

• What can we say?
 – Clear fmin (__ES)
 – no Es parameters
 – Clear foF2,
 – fxI = foF2+split
 – h’F, extrapolate down, maybe (__US)
 This is the hardest decision you will make scaling ionograms like this.
Sample Ionograms : nighttime
(Chch 31/05/99 17 UT)
Sample Ionograms: nighttime
(Chch 31/05/99 17 UT)
Sample Ionograms: nighttime
(Chch 31/05/99 17 UT)

- What can we say?
 - Clear fmin (__ES)
 - no Es parameters
 - foF2
 - Clearly spread F is present, scale inside edge (__ . F)
 - fxl - scale outside edge of trace (could be slightly high here)
 - h’F, extrapolate down, probably (__ .)
- Note:
 - multiple is spread less
 - primary appears to be split.
 - Clear gaps in trace due to interference

You ought to be able to scale these better than autoscale did!
Sample Ionograms: nighttime
(Hobart 31/05/99 11 UT)
Sample Ionograms: nighttime
(Hobart 31/05/99 11 UT)
Sample Ionograms: nighttime
(Hobart 31/05/99 11 UT)

- What can we say?
 - Clear fmin (___ES) (You can get to like fmin)
 - no Es parameters (Phew)
 - f0F2
 - Clearly spread F is present, scale inside edge (___F)
 - but did you recognise the Z-trace?
 - fxl - scale outside edge of the spread F.
 - h’F, extrapolate down, maybe (___US)

- Note:
 - multiple is spread less
 - You can get a good f0F2 value from the Z-trace

You ought to be able to scale these better than autoscale did!
Sample Ionograms: nighttime
(Townsville 31/05/99 16 UT)
Sample Ionograms: nighttime
(Townsville 31/05/99 16 UT)

- What can we say?
 - Clear f\text{min} (_ES)
 - no Es parameters
 - foF2
 - Clearly spread F is present, scale inside edge (_UF)
 - fxI - scale outside edge
 - h’F, extrapolate down, \textit{maybe} (_US)

- Note:
 - More spread
 - but multiple gives some guidance
 - multiple has \textit{odd} shape
Sample Ionograms: nighttime
(Townsville 31/05/99 17 UT)
Sample Ionograms: nighttime
(Townsville 31/05/99 17 UT)

- What can we say?
 - Clear fmin (__ES)
 - no Es parameters
 - foF2
 - Clearly spread F is present, scale inside edge (__UF) or worse
 - fxI - scale outside edge
 - h’F, extrapolate down, maybe (__ . Q) (for range spread)
- Note:
 - multiple is not much help
 - traces are now rather broad
 - interference evident
Sample Ionograms: nighttime
(Christchurch 30/05/99 19 UT)
Sample Ionograms: nighttime
(Christchurch 30/05/99 19 UT)
Sample Ionograms: nighttime
(Christchurch 30/05/99 19 UT)

- Well developed mid latitude spread F
- What is fxI
 - possibly interference obscures part of the trace, (__ US)
 - Note X-multiple
- F/S = 3P
Sample Ionograms: nighttime
(Townsville 30/05/99 14 UT)
Sample Ionograms: nighttime
(Townsville 30/05/99 14 UT)
Sample Ionograms: nighttime
(Townsville 30/05/99 14 UT)

• What can we say?
 – Clear fmin (___ES)
 – no Es parameters
 – foF2
 • Looks awful? Look at multiple, back to primary, and foF2 is clear, and probably not spread.
 • fxI - scale outside edge. Probably (___US).
 – h’F, extrapolate down, probably (___ . Q) (for range spread)

• Note:
 – (the black dash/dots were my attempt to identify the main trace)
 – multiple, once identified, is valuable
 – many traces are now present, confusing the ionogram
 – interference very evident (it can get worse)
And now for something completely different

Daytime
Sample Ionograms: daytime
(Christchurch 31/05/99 03 UT)
Sample Ionograms: daytime
(Christchurch 31/05/99 03 UT)
Sample Ionograms: daytime
(Christchurch 31/05/99 03 UT)

• What can we say?
 – Clear fmin (__) (with no scaling letters) (bit high here)
 – Sporadic E is present
 • foEs: descending layer, multiple present, extra-ordinary present
 • fbEs: tip of F region present
 – foF2: good value
 – h’F okay
• Note:
 – This is a good daytime ionogram to scale
 – disturbed multiple
 – how many sporadic E layers are present?
Sample Ionograms: daytime
(Townsville 31/05/99 00 UT)
Sample Ionograms: daytime
(Townsville 31/05/99 00 UT)
Sample Ionograms: daytime
(Townsville 31/05/99 00 UT)

• What can we say?
 – Clear fmin (___) (with no scaling letters)
 – Sporadic E parameters are awkward
 • probably some X component present
 • a weak trace, and may depend on sequence
 – foF2: good value
 – h’F2 okay, h’F possibly disturbed
 – foE: scaled too low here.

• Note:
 – sporadic E gives problems
 – This is a typical daytime ionogram, just a little awkward
Sample Ionograms: daytime
(Hobart 23/05/99 23 UT)
Sample Ionograms: daytime
(Hobart 23/05/99 23 UT)
Sample Ionograms: daytime
(Hobart 23/05/99 23 UT)

• Clear descending Es layer (but check sequence anyway)
• Another Es layers is also present
• This is a useful example of several multiples.
 – Decide which are multiples of which
 – scale the primary characteristics
• Note the possibly second Es layer
 – ordinary component is hard to detect
 – but extra ordinary is clear
Sample Ionograms: daytime
(Townsville 29/05/99 05 UT)
Sample Ionograms: daytime
(Townsville 29/05/99 05 UT)

- F_{min}? Weak trace rule
- f_oF2: easy, autoscale agrees
- $h'F2$: poorly formed F1, none there
- $h'F$: (___ U A) or (___ UH) or (___) ??
- f_oEs? How many Es traces and which
- f_oE?
Sample Ionograms: daytime
(Townsville 29/05/99 05 UT)
Sample Ionograms: daytime (Townsville 29/05/99 05 UT)
Sample Ionograms : daytime
(Townsville 29/05/99 05 UT)

• Fmin Weak trace rule - ignore the low bit
 – but some discussion over this. See a sequence.
• foF2: agreed
• h’F / h’F2:
• h’F: (___ H) only h’F scaled
• foEs: scale the highest foEs. Note low type
• foE: using c, h Es layers, foe = good value
Sample Ionograms: daytime
(Mundaring 02/06/99 02 UT)
Sample Ionograms: daytime
(Mundaring 02/06/99 02 UT)

- Spread Es example
- Spreading in the E region is an unusual condition we note by scaling a Q on h’Es
- There may also be a slant Es here
- Note weak F2 region criticals
- Also note the odd splitting on the Mundaring trace.
 - An example of an equipment problem you would need to recognise.
Sample Ionograms: daytime
(Christchurch 31/05/99 03 UT)
Sample Ionograms: daytime
(Christchurch 24/05/99 23 UT)
Sample Ionograms: Daytime
(Christchurch 24/05/99 23 UT)

- Travelling Ionospheric Disturbances (TIDs)
 - give some zest to scaling.
 - They affect both the E and F region,
 - but are most prominent in F2 region.
 - When present, scale H on characteristics affected by it.
- However, this ionogram has several other tricky bits
 - \(f_{min} \) - weak trace rule needed?
 - \(f_{oE} \) - extrapolation, probably \((__UA) \)
 - (and maybe scaled even higher than here)
 - \(h’Es \) - extrapolation \((__UG) \)
Sample Ionograms: daytime (Hobart 26/05/99 00 UT)
Sample Ionograms: daytime
(Hobart 26/05/99 00 UT)
Sample Ionograms: daytime
(Hobart 26/05/99 23 UT)

- E region
 - spread Es well developed
 - $fxE_s \neq f_{oE_s} + \text{split}$ (spread Es is signal strength dependent)
 - f_{bE_s} is possibly too low here.

- F2 region
 - A travelling ionospheric disturbance, the so-called V
 - the meaning of V is contested
 - the inner edge is inconsistent with the multiple
 - f_{oF_2}: (___ . V) although (___ . H) is just as good
 - fxI will have descriptive letter X; no spread.
Sample Ionograms: daytime (Christchurch 23/05/99 00 UT)
Sample Ionograms: daytime
(Christchurch 23/05/99 00 UT)
Sample Ionograms: daytime
(Christchurch 23/05/99 23 UT)

- One day earlier
 - it isn’t unusual to find similar cases clustering
- There are several tricky scaling issues
 - foEs = fxEs - split (note slight change in trace)
 - fmin - weak trace issues
 - foE - extrapolation (___ UA) probably
 - Note low type Es, record type, but don’t scale it
 - h’F - probably (___ EA) or maybe (___ UA)
 - fxI - outside trace = (--- F)
 - foF2 (___ UH)
Sample Ionograms: daytime
(Hobart 29/05/99 00 UT)
Sample Ionograms: daytime
(Hobart 29/05/99 00 UT)
Sample Ionograms : daytime
(Hobart 29/05/99 00 UT)

• Large TID & Spread Es - a disturbed ionogram
• E region
 – spread Es, but h’Es difficult to measure
 – foE: (00 . A) but sequence may give a value
• F1 present? Need a sequence
 – h’F (-- H)
• F2: major TID implies big gradients
 – normally scale the inside edge
 – the multiple offers some extra information (__ . H)
Sample Ionograms: nighttime
(Hobart 30/05/99 15 UT)
Sample Ionograms: nighttime
(Hobart 30/05/99 15 UT)
Sample Ionograms: nighttime
(Hobart 30/05/99 15 UT)

- A nighttime travelling ionospheric disturbance (TID)
 - Note fxl \neq foF2 + split
- Need to estimate overhead trace carefully, but not much information in one ionogram.
- h’F: this requires considerable extrapolation
 - (__ UF) or even (__ EF) if you are uncertain.
Sample Ionograms: daytime
(Hobart 02/06/99 02 UT)
Sample Ionograms: daytime (Hobart 02/06/99 02 UT)
Sample Ionograms: daytime
(Hobart 02/06/99 02 UT)

• \(\text{foF}_2 \) - maybe wrong, multiple not consistent (__ .H)
 – or F if spreading is sufficient
• \(\text{foE} \) - can’t be scaled from this ionogram,
 – maybe knowing \(\text{foE} \) would help
• \(\text{Es} \) is showing clear range spread
 – and \(\text{fbEs} \) may need a sequence to define it
• Probably no x-mode \(\text{Es} \) present,
 – although this is contentious, scale \(\text{foEs} \) (__ .F)
 – \(\text{h’Es} \) (__ . Q)
• \(\text{fmin} \) - accept weak trace; whole trace is weakening
Sample Ionograms: daytime
(Hobart 31/05/99 22 UT)
Sample Ionograms: daytime
(Hobart 31/05/99 22 UT)
Sample Ionograms: daytime
(Hobart 31/05/99 22 UT)

• Dawn: a time of awkward ionograms
• foF2 - small TID present; use H or not? Probably no.
• fmin - weak trace rule
• foE - you **NEED** a prediction for foE here
 – or a sequence
 – or experience from other similar days
• Sporadic E, possibly, but probably not
Sample Ionograms: daytime
(Hobart 31/05/99 22 UT)
Sample Ionograms: daytime
(Hobart 23/05/99 22 UT)
Sample Ionograms: daytime
(Hobart 23/05/99 22 UT)

• Compare these two days
• Substantial development, but:
 – f_0E is clearer, isn’t it? Still not easy.
 – f_0Es appears in second ionogram
 – layers look more like $f_0.5$, or $E2$ in the former
 – Note multiples are disorganised; a dynamic change near dawn.
Sample Ionograms: daytime
(Townsville 28/05/99 07 UT)
Sample Ionograms: daytime
(Townsville 28/05/99 07 UT)
Sample Ionograms: daytime
(Townsville 28/05/99 07 UT)

• Blanketing sporadic E can require much scaling skill
• Identify primary trace,
 – then O-mode and x-mode
 – then multiples of each
• Having disentangled all the extra information,
• scale foE
• Is it h’F? Use other days to know if foF1 is possible
Sample Ionograms: nighttime
(Hobart 26/05/99 12 UT)
Sample Ionograms: nighttime
(Hobart 26/05/99 12 UT)
Sample Ionograms: nighttime
(Hobart 26/05/99 12 UT)

• E region
 – figure out where the multiples are
 – \(f_{bE} \) slightly higher than \(f_{\text{min}} \)
 – \(f_{oE} = f_{xE} - \) split (note: weakened trace)

• F region
 – Is \(f_{oF2} \) (___ . F)?
 – Either way, \(f_{xl} = (___ . .) \); no X
Sample Ionograms : nighttime
(Hobart 27/05/99 07 UT)
Sample Ionograms: nighttime
(Hobart 27/05/99 07 UT)
Sample Ionograms: nighttime
(Hobart 27/05/99 07 UT)

- **F region**
 - straightforward

- **E region**
 - foEs: decide where fxEs is, and subtract split, or scale where the break in trace appears
 - fbEs is easier,
 - foE: (__ EB), since F trace shows retardation
 - h’E: (00 . S) replacement letter S

- **fmin**
 - follow the weak trace through here as no discontinuity
Sample Ionograms: daytime
(Christchurch 24/05/99 19 UT)
Sample Ionograms: daytime
(Christchurch 24/05/99 19 UT)
Sample Ionograms : daytime
(Christchurch 24/05/99 19 UT)

• F region
 – foF2 (__ . F)
 – h’F: possibly (__ . .), maybe (__ UA)
 It is reasonably clear where it tends to.

• E region
 – Identify, and ignore oblique traces
 – foE required? Know the time.
 – foEs = fxEs - split (__ JA) Let program do it
Accuracy

• Feel confident about your interpretation
• Use accuracy rules to communicate your confidence
• Estimate of accuracy:
 – no scaling letters; within 5% (__ ..)
 – descriptive letter; possible errors (__ .#)
 – qualifying letter U; 4 to 10% accurate (__ U#)
 – qualifying letters E&D; within 20% (__ E/D #)
 – replacement letter; over 20% uncertainty (0 . #)
• As many values as possible should be scaled.
Estimating parameters

• Frequency
 – use x-mode to infer o-mode, (__ J #)
 – use o-mode to infer x-mode, (__ O #)
 – use z-mode to infer another mode (__ Z #)
 – All these imply an unknown, possible error

• Heights
 – h’z < h’o < h’x
 – with experience, you can estimate h’o
Flags

- **F**: spread F, spread exceeds 0.2 MHz
- **k type Es**: particle E present
- **l type Es**: fmin is scaled from low type Es layer
- **L**: mixed range and frequency spread (unusual)
- **P**: fxl measured from oblique, or unusual spur
- **Q**: range spread, spread exceeds 30 km
- **X**: no spread present in F region
- **Z**: Z-mode present in layer
- **Disturbances**: R, V, H, Y usually used on parameters
Sample Ionograms: daytime
(Hobart 28/05/99 22 UT)
Sample Ionograms: daytime
(Hobart 28/05/99 22 UT)
Sample Ionograms: daytime
(Hobart 28/05/99 22 UT)

• F region
 – very easy

• E region
 – foE: looks spread, but fxE isn’t? (__ . H)
 – foEs: possible meteor traces. Right characteristics. Check the sequence.
Oblique sporadic E or ?